All Mathematics Formulas In Hindi | गणित के सभी सूत्र Hindi Me

All Mathematics Formulas In Hindi - हेल्लो Student अगर आप सभी विद्यार्थी किसी भी सरकारी परीक्षा की तैयारी करते हैं तो आपको पता होगा की लगभग सभी सरकारी परीक्षा में Mathematics (गणित) विषय से प्रश्न अवश्य पूछे जाते हैं इसलिए आप सभी विद्यार्थियों के लिए आज हम गणित के सभी सूत्र (All Mathematics Formulas In Hindi) एक ही पोस्ट में लेकर कर आए हैं, जो आपके आने वाले परीक्षा के लिए बहुत ही उपयोगी सिद्ध होंगे | इसके मदद से आप परीक्षा के गणित भाग में अच्छा स्कोर कर सकते है |

All Mathematics Formulas In Hindi

Dear Students, ये गणित सूत्र आपके आने वाले सभी प्रतियोगी परीक्षाओं जैसे SSC CGL, SSC CHSL, Bank Exams, Railway, Defense और भी सभी प्रतियोगी परीक्षाओं के लिए बेहद उपयोगी साबित होने वाली है | जैसा की आप सभी जानते होगे की परीक्षा में Mathematics Question को Solve करने के लिए गणित के सभी सूत्र को याद करना अति आवश्यक होता है | इसी को ध्यान में रखते हुए आज हम आप सभी छात्रों के लिए All Mathematics Formulas में लेकर आए है |

All Mathematics Formulas ( गणित के सभी सूत्र ) Hindi Me -

आयत (Rectangle) - वह चतुर्भुज जिसकी आमने-सामने की भुजाएं समान हो तथा प्रत्येक कोण समकोण (90º) के साथ विकर्ण भी समान होते हैं।

  • आयत का क्षेत्रफल = लम्बाई (l) × चौड़ाई (b)
  • आयत का परिमाप = 2 (लम्बाई + चौड़ाई)
  • कमरे की चार दीवारों का क्षेत्रफल = 2 (लम्बाई + चौड़ाई) × ऊंचाई

वर्ग (Square) - उस चतुर्भुज को वर्ग कहते हैं, जिनकी सभी भुजाएं समान व प्रत्येक कोण समकोण है।

  • वर्ग का क्षेत्रफल = (भुजा)2 (विकर्ण)2
  • Square का विकर्ण = भुजा
  • वर्ग का परिमाप = 4 × (भुजा)2

(नोटः यदि किसी वर्ग का क्षेत्रफल = आयत का क्षेत्रफल हो, तो आयत का परिमाप सदैव वर्ग के परिमाप से बड़ा होगा।)

समानांतर चतुर्भुज (Parallelogram) - जिस चतुर्भुज की सम्मुख भुजाएं समानांतर व समान हो वह समानांतर चतुर्भुज कहलाता है। समानांतर चतुर्भुज के विकर्ण परस्पर एक-दूसरे को समद्विभाजित करते हैं। एक विकर्ण समानांतर चतुर्भुज को दो समान त्रिभुजों में बांटता है।

  • समानांतर चतुर्भुज का क्षेत्रफल = आधार × ऊंचाई
  • समानांतर चतुर्भुज का परिमाप = 2 × आसन्न भुजाओं का योग

समचतुर्भुज (Rhombus) - उस समानान्तर चतुर्भुज को समचतुर्भुज कहते हैं जिसकी सभी भुजाएं समान हो तथा विकर्ण परस्पर समकोण पर समद्विभाजित करते हों, पर कोई कोण समकोण न हो।

  • समचतुर्भुज का क्षेत्रफल = विकर्णों का गुणनफल
  • समचतुर्भुज का परिमाप = 4 × एक भुजा

समलम्ब चतुर्भुज (Trapezium) - जिस चतुर्भुज की एक जोड़ी समानांतर हो, अन्य जोड़ी भुजाएं असमानांतर हो, तो वह समलम्ब चतुर्भुज होता है।

  • समलम्ब चतुर्भुज का क्षेत्रफल = समानांतर भुजाओं का योग × ऊंचाई

विषमकोण समचतुर्भुज (Rhombus) - वैसा चतुर्भुज जिसकी चारों भुजा आपस में समान हो तथा आमने-सामने की भुजा आपस में समानांतर हो, वह विषमकोण समचतुर्भुज कहलाता है।

  • समचतुर्भुज का परिमाप = 4 × भुजा
  • समचतुर्भुज का क्षेत्रफल = आधार × ऊंचाई

इस चतुर्भुज में आमने-सामने का कोण समान होता है तथा इसके विकर्ण एक-दूसरे को समकोण पर समद्विभाजित करते हैं।

वृत्त (Circle) - वृत्त बिंदुओं को एक बिंदुपथ है जिसमें एक स्थिर बिंदु से घूमने वाली एक-दूसरे बिंदु के मध्य की दूरी समान होती है, स्थिर बिंदु वृत्त का केंद्र कहलाता है ।

त्रिज्या (Radius) - वृत्त के केंद्र से परिधि को मिलाने वाली सरल रेखा त्रिज्या कहलाती है।

व्यास (Diameter) - वृत्त की परिधि से चलकर वृत्त की दूसरी परिधि के कोने को छूने वाली वह रेखा, जो वृत्त के केंद्र से गुजरती है, व्यास कहलाती है।

जीवा/चापकर्ण (Chord) - किसी वृत्त की परिधि के किन्हीं दो बिंदुओं को मिलाने वाली रेखा-खण्ड वृत्त की जीवा कहलाती है।

त्रिज्याखण्ड (Sector) - किसी वृत्त की दो त्रिज्याएं एवं उसके अंतर्गत चाप से बनी आकृति को त्रिज्याखण्ड कहते हैं।

वृत्तखण्ड (Segment) - किसी वृत्त की जीवा व चाप से घिरे क्षेत्र को वृत्तखण्ड कहते हैं। यहां छायांकित भाग वृत्तखण्ड है।

संकेंद्रीय वृत्त (Concentric Circle) - यदि दो या दो से अधिक वृत्तों का केंद्र एक ही हों, तो उन वृत्तों को संकेंद्रीय वृत्त कहते हैं।

All Algebra Math Formula (बीजगणित सूत्र) -

  • a2 – b2 = (a – b)(a + b)
  • (a+b)2 = a2 + 2ab + b2
  • a2 + b2 = (a – b)2 + 2ab
  • (a – b)2 = a2 – 2ab + b2
  • (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
  • (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
  • (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
  • (a – b)3 = a3 – 3a2b + 3ab2 – b3
  • a3 – b3 = (a – b)(a2 + ab + b2)
  • a3 + b3 = (a + b)(a2 – ab + b2)
  • (a + b)3 = a3 + 3a2b + 3ab2 + b3
  • (a – b)3 = a3 – 3a2b + 3ab2 – b3
  • (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
  • (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
  • a4 – b4 = (a – b)(a + b)(a2 + b2)
  • a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

गणित सूत्र (All Mathematics Formulas) –

  • वृत्त का क्षेत्रफल = πr2
  • वृत्त की परिधि = 2πr
  • त्रिज्याखण्ड का क्षेत्रफल (चाप AB) × r (जहां θ = केंद्रीय कोण)
  • संकेंद्रीय वृत्तों के वलय का क्षेत्रफल = π (r2 – r2)
  • अर्द्धवृत्त का परिमाप = (π + 2) r

Important Points:-

  • किसी आयताकार/वर्गाकार/वृत्ताकार मैदान के चारों ओर दौड़ने/तार बिछाने से संबंधित प्रश्नों में उनकी परिमाप ज्ञात करना आवश्यक होता है।
  • एक वर्ग व उसी वर्ग के विकर्ण पर खींचे गए एक अन्य वर्ग के क्षेत्रफल के बीच का अनुपात 1:2 होगा।
  • वर्गाकार/आयताकार तार की लम्बाई उस वर्ग या आयत के परिमाप के बराबर होती है।
  • एक वृत्ताकार तार की लम्बाई उस वृत्त के परिमाप या परिधि के बराबर होती है।
  • एक पहिए द्वारा एक चक्कर में तय की गई दूरी वृत्ताकार पहिए की परिधि के समान होगी।

त्रिभुज (Triangle) - तीन भुजाओं से घिरे क्षेत्र को त्रिभुज कहते हैं।

  • त्रिभुज का क्षेत्रफल आधार × ऊंचाई
  • Triangle का परिमाप = सभी भुजाओं का योग

समकोण त्रिभुज (Right-angle Triangle) - जिस त्रिभुज का एक कोण समकोण अर्थात् 90º होता है। इस त्रिभुज में समकोण के सामने वाली भुजा को कर्ण कहते हैं।

  • (कर्ण)2 = (लम्ब)2 + (आधार)2
  • समकोण त्रिभुज का क्षेत्रफल = आधार × लम्ब

समबाहु त्रिभुज (Equilateral Triangle) - जिस त्रिभुज की सभी भुजाएं समान हो तथा प्रत्येक कोण 60º होता है।

  • समबाहु त्रिभुज का क्षेत्रफल =(भुजा)2
  • समबाहु त्रिभुज का परिमाप = 3 × एक भुजा

समद्विबाहु त्रिभुज (Isosceles Triangle) - जिस त्रिभुज की केवल दो भुजाएं समान हो वह समद्विबाहु त्रिभुज कहलाता है।

  • समद्विबाहु त्रिभुज का परिमाप = 2a + b

विषमबाहु त्रिभुज (Scalene Triangle) - जिस त्रिभुज की सभी भुजाएं असमान हों।

गणित सूत्र कक्षा 8 से लेकर 12 तक -

उभयनिष्ट गुणक -

  • c(a+b) = ca + cb

द्विपद का वर्ग -

  • (a+b)2 = a2 + 2ab + b2
  • (a-b)2 = a2 – 2ab + b2

दो पदों के योग एवं अन्तर का गुणनफल (वर्गान्तर सूत्र) -

  • a2 – b2 = (a+b) (a-b)

अन्यान्य सर्वसमिकाएँ (घनों का योग व अंतर) -

  • a3 – b3 = (a-b) (a2 + ab + b2)
  • a3 + b3 = (a+b) (a2 – ab + b2)

द्विपद का घन -

  • (a + b)3 = a3 + 3a2b + 3ab2 + b3
  • (a – b)3 = a3 – 3a2b + 3ab2 – b3

बहुपद का वर्ग -

  • (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

दो द्विपदों का गुणन जिनमें एक समान पद हो -

  • (x + a )(x + b ) = x2 + (a + b )x + ab

गाउस (Gauss) की सर्वसमिका -

  • a3 + b3 + c3 – 3abc = (a+b+c) (a2 + b2 + c2 – ab -bc – ca)

लिगेन्द्र (Legendre) सर्वसमिका -

  • (a+b)2 + (a-b)2 = 2(a2 + b2)
  • (a+b)2 – (a-b)2 = 4ab)
  • (a+b)4 – (a-b)4 = 8ab(a2 + b2)

लाग्रेंज (Lagrange) की सर्वसमिका -

  • (a2 + b2)(x2 + y2) = (ax + by)2 + (ay – bx)2
  • (a2 + b2 + c2) (x2 + y2 + z2) = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy )2

H.C.F. And L.C.M Formula -

1. महत्तम समापवर्तक – ‘ महत्तम समापवर्तक ’ वह अधिकता संख्या है , जो दी गई संख्याओं को पूर्णतया विभाजित करती है । जैसे – संख्याएँ 10 , 20 , 30 का महत्तम समापवर्तक 10 है ।

2. समापवर्तक ( Common Factor ) – ऐसी संख्या जो दो या दो से अधिक संख्याओं में से प्रत्येक को पूरी – पूरी विभाजित करें , जैसे – 10 , 20 , 30 का समापवर्तक 2 , 5 , 10 है ।

3. लघुत्तम समापवर्त्य – दो या दो से अधिक संख्याओं का ‘ लघुत्तम समापवर्त्य ’ वह छोटी – से – छोटी संख्या है , जो उन दी गई संख्या में से प्रत्येक से पूर्णतया विभाजित हो जाती है । जैसे – 3 , 5 , 6 का लघुतम समापवर्त्य 30 है , क्योंकि 30 को ये तीनों संख्याएँ क्रमशः विभाजित कर सकती हैं ।

4. समापवर्त्य ( Common Multiple ) – एक संख्या जो दो या दो से अधिक संख्याओं में । से प्रत्येक से पूरी – पूरी विभाजित होती हो , तो वह संख्या उन संख्याओं की समापवर्त्य कहलाती है , जैसे – 3 , 5 , 6 का समापवर्त्य 30 , 60 , 90 आदि हैं ।

5. अपवर्तक एवं अपवर्त्य ( Factor and Multiple ) – यदि एक संख्या m दूसरी संख्या n को पूरी – पूरी काटती है , तो m को n का अपवर्तक ( Factor ) तथा n को m का अपवर्त्य ( Multiple ) कहते हैं ।

Number System Mathematics Formulas In Hindi -

1. प्राकृत संख्याएँ (Natural Numbers): वस्तुओं को गिनने के लिए जिन संख्याओं का प्रयोग किया जाता है, उन्हें गणन संख्याएँ या ‘प्राकृत संख्याएँ’ कहते हैं।

जैसे- 1, 2, 3, 4, 5,6,7, . . . .

2. पूर्ण संख्याएँ (Whole Numbers): प्राकृत संख्याओं में शून्य को मिलाने पर जो संख्याएँ प्राप्त होती हैं उन्हें ‘पूर्ण संख्याएँ’ कहते हैं।

जैसे- 0, 1, 2, 3, 4, 5, 6, 7, . . . .

3. पूर्णांक संख्याएँ (Integers): प्राकृत संख्याओं में शून्य एवं ऋणात्मक संख्याओं को मिलाने पर जो संख्याएँ प्राप्त होती हैं, उन्हें ‘पूर्णांक संख्याएँ’ कहते हैं।

जैसे- –3, -2, -1, 0, 1, 2, 3, . . . .

4. सम संख्याएँ (Even Numbers): वे संख्याएँ जो 2 से पूर्णतः विभाजित होती हैं उन्हें ‘सम संख्याएँ’ कहते हैं।

जैसे – 2, 4, 6, 8, . . .

5. विषम संख्याएँ (Odd Numbers) : वे संख्याएँ जो 2 से पूर्णतः विभाजित नहीं होती हैं उन्हें ‘विषम संख्याएँ ’ कहते हैं।

जैसे- 1, 3, 5, 11, 17, 29, 39 , . . . .

6. अभाज्य संख्याएँ (Prime Numbers): वे संख्याएँ जो स्वयं और 1 के अलावा अन्य किसी संख्या से विभक्त नहीं होती हैं उन्हें ‘अभाज्य संख्याएँ’ कहते हैं।

जैसे- 2, 3, 7, 11, 13, 17 ……….

नोट -‘1’ न तो अभाज्य संख्या है और न ही भाज्य संख्या

7. भाज्य संख्याएँ (Composite Numbers): वे संख्याएँ जो स्वयं और 1 के अलावा अन्य किसी संख्या से पूर्णतः विभक्त हो जाती हैं ,उन्हें ‘भाज्य संख्याएँ ’ कहते हैं।

जैसे- 4, 6, 8, 9, 10, …………

Trigonometry Formula In Hindi -

  • Sin θ = 1 / cosec θ
  • cosec θ = 1 / Sin θ
  • cos θ = 1 / sec θ
  • sec θ = 1/ cos θ
  • sin θ.cosec θ = 1
  • cos θ.sec θ = 1
  • tan θ.cot θ = 1
  • tan θ = sin θ / cos θ
  • cot θ = cos θ / sin θ
  • tan θ = 1 / cot θ
  • cot θ= 1 / tan θ

अगर आपको इस पोस्ट में दी गयी जानकारी (All Mathematics Formulas In Hindi ) अच्छी लगी हो तो इसे अपने दोस्तों और रिश्तेदारों के साथ Social Media पर Share अवश्य करें ! और Comment के माध्यम से बताऐं की ये पोस्ट आपको कैसे लगी - धन्यवाद |

Follow us on Social Media Sites - 

  • Telegram पर फॉलो करे – Click Here
  • Facebook पर फॉलो करे – Click Here

Post a Comment

Previous Post Next Post